$$\frac{{j}}{{\mp \bar{\Xi}^{y}}} > \log {\sum}_{{\prod}_{{{\omega}}^{{b^{\epsilon}}-{\breve{s}}}}^{{\mp L_{\nu,I,\Sigma}^{\tilde{\beta}}}}\left\{{-C}\right\}}^{{\Sigma}+{\Upsilon}}\left\vert {r_{z,d}}\right\vert = \left\{{\pi^{C}{\left(\left\vert {\Psi}\right\vert\left\right,{\coprod}_{{\sum}_{{-u}}^{{\mp \ddot{b}^{\bar{o}}}}\left\right}^{{T_{\nu}}}{\prod}_{{F}}^{\cos {\omega^{Y}}}\left\right\right)}}\right\}\left\right \approx \frac{{\sum}_{{\prod}_{\min_{{\prod}_{{\bar{g}^{f}{\left\{{\kappa^{I}},{\prod}_{{s{\left\{{\pi},{o^{U}{\left\{{\ddot{M}{\left\right}}\right\}}}+{\grave{\psi}_{E}},\tan {\int}_{{\int}_{{\check{\Phi}}}^{{P}}\left\{{\dot{\pi}}\right\}}^{{R}}\left\vert {x_{\vec{t}}}\right\vert\right\}}}}^{{G^{X}}}\left\right\right\}}}}^{{\vec{\lambda}_{V,I}}}{\nu} \not= {C}}{\beta{\left\{{\Sigma}\right\}}}+\frac{{P}}{{\tilde{\sigma}^{N}}}}^{{\check{\theta}{\left({\bar{L}_{\Omega,i}^{v}}\right)}}}\left(\tan {{Q^{G}}}^{{\Xi}}+\left({K}\right)\left\right\right)}^{{z_{h}^{\tau}}}\left\vert {\lambda_{L}^{\beta}}\right\vert}{{\Omega}-{\sum}_{{\lambda{\left\right}}}^{{\Sigma}}{c_{E}}} \ll \arctan \left\{{C_{p}}\right\}$$
TheInquisitor/LatexGenerator